Estimating a class of diffusions from discrete observations via approximate maximum likelihood method
نویسندگان
چکیده
منابع مشابه
A quasi-maximum likelihood method for estimating the parameters of multivariate diffusions
This paper develops a quasi-maximum likelihood (QML) procedure for estimating the parameters of multi-dimensional stochastic differential equations. The transitional density is taken to be a time-varying multivariate Gaussian where the first two moments of the distribution are approximately the true moments of the unknown transitional density. For affine drift and diffusion functions, the momen...
متن کاملApproximate Maximum Likelihood Method for Frequency Estimation
A frequency can be estimated by few Discrete Fourier Transform (DFT) coefficients, see Rife and Vincent (1970), Quinn (1994, 1997). This approach is computationally efficient. However, the statistical efficiency of the estimator depends on the location of the frequency. In this paper, we explain this approach from a point of view of an Approximate Maximum Likelihood (AML) method. Then we enhanc...
متن کاملApproximate Profile Maximum Likelihood
We propose an efficient algorithm for approximate computation of the profile maximum likelihood (PML), a variant of maximum likelihood maximizing the probability of observing a sufficient statistic rather than the empirical sample. The PML has appealing theoretical properties, but is difficult to compute exactly. Inspired by observations gleaned from exactly solvable cases, we look for an appro...
متن کاملQuasi-Maximum Likelihood Estimation of Multivariate Diffusions
This paper introduces quasi-maximum likelihood estimator for multivariate diffusions based on discrete observations. A numerical solution to the stochastic differential equation is obtained by higher order Wagner-Platen approximation and it is used to derive the first two conditional moments. Monte Carlo simulation shows that the proposed method has good finite sample property for both normal a...
متن کاملMaximum Likelihood Drift Estimation for Multiscale Diffusions
We study the problem of parameter estimation using maximum likelihood for fast/slow systems of stochastic differential equations. Our aim is to shed light on the problem of model/data mismatch at small scales. We consider two classes of fast/slow problems for which a closed coarse-grained equation for the slow variables can be rigorously derived, which we refer to as averaging and homogenizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics
سال: 2017
ISSN: 0233-1888,1029-4910
DOI: 10.1080/02331888.2017.1382496